400-611-6988
考研考点 > 考研经综 >
加考研QQ群

2017考研数学:线性代数解题的8个惯性思维

考研数学,虽然题目可能千变万化,非常灵活,但其实有些固定的解题方法和思维可通用。下面就总结了线性代数8个解题惯性思维,只要大家看到类似题型,至少知道该如何起步。

  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

  4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

  7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

考研老师会在24小时内给您回电解答

相关信息

关于我们|联系我们|支付方式


24小时客服热线:4006796167 / 

在线客服

拨打电话

学姐微信